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The velocity of a keplerian orbiter is simply the addition of a uniform rotation velocity and a
uniform translation velocity. We state this as a theorem and demonstrate that it forecasts the
three laws of Kepler. Additionally the derivative of the so defined velocity leads to the Newton’s
gravitational acceleration, but the kinematics gives a different interpretation to it, being centripetal
rather than attractive, and replacing the Newton’s constant numerator GM by a more universal
kinematic constant. This leads to a simple solution to explain the rotation of the galaxies without
any dark matter. This theorem also shows that a gravitational acceleration can not be equivalent to
a mechanical acceleration, the first causing a rotation while the second can only cause a translation.

I. INTRODUCTION

The Newton’s gravitational acceleration is considered
as the reason for the Keplerian motion. However as far
as an acceleration always derives from a velocity we may
wonder if the Keplerian motion could also proceed with a
typical and remarkable velocity. Many works of the liter-
ature, mainly using the hodograph plane representation
of the motion[1–8], report some information about the
Keplerian velocity : it is the addition of a uniform rota-
tion velocity and a uniform translation velocity. Such a
simple and peculiar mathematical structure of the veloc-
ity interrogates, so we investigated it.

We found that a very simple theorem of kinematics
regarding the velocity leads to the forecast of the three
laws of Kepler, as well as the mathematical structure of
the Newton’s acceleration. This is what we demonstrate
in the first part of this article.

In the second part we study some of the consequences
of this theorem. Among them the kinematic interpreta-
tion of the acceleration is different from the one of New-
ton, even if its mathematical structure is confirmed. The
acceleration is centripetal rather than attractive, and a
kinematic constant takes the place of the famous numer-
ator GM . This shall have an impact on all the theories
using the universal constant G, and it also open the possi-
bility to extend the Newton’s acceleration to other physi-
cal scales than the one used by Newton. For instance the
kinematics can explain the rotation of the galaxies with-
out requiring any dark matter, nor any other postulate.

We also demonstrate that the gravitational and the
mechanical acceleration can not be of the same nature,
the first one causing the rotation while the second can
only cause a translation. This shall have an impact on the
theories that consider both accelerations as equivalent.

II. STATEMENT OF THE THEOREM

According to the works of the literature we state the
following theorem :
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Theorem 1. The velocity of a Keplerian orbiter on a
fixed orbit is always the sum of a uniform rotation veloc-
ity and a uniform translation velocity, both coplanar.

Let us demonstrate that any orbiter which velocity is
given by this theorem will have a motion respecting the
three laws of Kepler.

III. PROOF OF THE THEOREM

Mathematically the above theorem can be written as
so :

~v = ~vR + ~vT

with

vR = ‖~vR‖ = ‖~ω × ~r‖ = ωr = constant

vT = ‖~vT ‖ = constant

(1)

In this expression ~ω is the frequency of rotation, ~r is the
vector radius, ~vR is the uniform rotation velocity and
~vT the uniform translation velocity. Note that here the
index R does not stand for ”radial” but for ”rotation”,
and the index T does not stand for ”tangential” but for
”translation” (see figure 1).

From the above relationship we get a trivial but im-
portant expression :

ω̇r + ωṙ = 0 (2)

Using the relations 1 and 2 we can calculate the accel-
eration which is the derivative of the velocity with respect
to time :

~a = ~̇ω × ~r + ~ω × ~v = − ~ω
r2
× (~r × (~r × ~v)) (3)

Defining the ”massless angular momentum” like R.H.
Battin [9] did as

~L = ~r × ~v (4)

the final expression of the acceleration is given by :

~a = −LvR
r3

~r (5)
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Therefore the acceleration and the vector radius are co-
linear and this forces the angular momentum to be a
constant, as awaited for a central field motion :

~L = ~constant (6)

Now from this we observe that the vector product of
the rotation velocity with the angular momentum leads
trivially to :

~vR × ~L = v2R

(
1 +

~vR.~vT
v2R

)
~r (7)

Therefore the scalar version of this expression is

p = (1 + e cos θ) r with p =
L

vR
and e =

vT
vR

(8)

This is the equation of a conic where p is the semi latus
rectum, e is the eccentricity and θ is the true anomaly,
i.e. the angle between ~vR and ~vT which is also the an-
gle between the direction of the periapsis and the vector
radius. This is the expression of the Kepler’s first law.

Note that the vector expression of the eccentricity is
given by :

~e =
~vT × ~L
LvR

(9)

and that explains why the translation velocity is always
perpendicular to the main axis of the conic.

The figure 1 exhibits both the rotation and the trans-
lation velocities at different positions on a conic.

FIG. 1. The velocity of a Keplerian orbiter ~v on a fixed orbit is
always the sum of a uniform rotation velocity ~vR, perpendic-
ular to the vector radius, and a uniform translation velocity
~vT , which direction is always perpendicular to the main axis
of the conic. Both are coplanar and have a constant norm all
along the trajectory.

Let us now note that the scalar multiplication of the
total velocity and the vector radius leads to :

~r.~v = ~r.~vT = rṙ thus ṙ = vT sinθ (10)

Using this last expression it is trivial to show that the
angular momentum can be presented as the multiplica-
tion of the square of the vector radius and the derivative
of the true anomaly with respect to time :

L = r2θ̇ (11)

This last expression is very well known, being described
for instance by L. Landau and E. Lifchitz in their course
”Mechanics” [10]. It shows that the areal velocity, de-

fined as f = r2θ̇/2, must be a constant as far as the
angular momentum also is. Therefore the expression 11
is nothing else but the second law of Kepler.

Note that the time derivative of the true anomaly θ̇ and
the frequency of rotation ω are related by the following
formula :

θ̇ = ω(1 + ecosθ) = ω
p

r
or rθ̇ = pω (12)

Now integrating the expression 11 over a complete period
T of revolution for an ellipse, as described by L. Landau
and E. Lifchitz, and knowing that L and vR are two con-
stants, we are trivially led to the following formula :

LvR = 4π2 a
3

T 2
= k = constant (13)

This is the expression of the third law of Kepler.

We have therefore demonstrated that the theorem 1
forecasts indeed the three laws of Kepler. This result
is not a point of view, neither an hypothesis, neither a
postulate, but this is a geometric reality that we can not
ignore.

IV. SOME CONSEQUENCES

A. Newton’s gravitational postulate

The acceleration of a Keplerian orbiter is given by the
expression 5 which is exactly the one of Newton at the
condition that :

LvR = GM (14)

where G is the universal constant of gravitation and M
the mass of the central body causing the motion of the
orbiter. We also note that the same condition is required
to make the relation 13 of the third law of Kepler com-
patible with the one of Newton.

From the kinematics point of view Newton has there-
fore implicitly postulated that LvR = GM . Apart from
that the mathematical structure of the acceleration that
he proposed is fully compatible with the one required by
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the kinematics. However his interpretation of the sign of
the acceleration disagrees with the one of the kinematics.
Indeed for Newton the direction of the acceleration being
opposed to the one of the vector radius, it is attractive,
while for the kinematics it is centripetal. For the kine-
matics the gravitation does not cause the attraction but
the rotation.

B. Galileo’s principle of equivalence

The theorem 1 is mass independent and therefore it
agrees that any motion in a gravitational field is mass
independent, as shown by Galileo.

C. Mechanical energy

Calculating the square of the expression 1 it is trivial
to define a kinematic energy, i.e. a massless energy as
follows :

EM =
1

2
v2 − LvR

r
=

1

2
v2R(e2 − 1) (15)

Multiplying this last expression by the mass of the or-
biter, we get directly the usual expression of the mechan-
ical energy as described in classical mechanics [10].

D. Body falling

If we hold an object in the hand, its velocity is null but
it must nonetheless respect the theorem 1. This leads to
consider that the rotation and the translation velocities
must be of the same amplitude but opposite directions:
~vR = −~vT . The rotation velocity is provided by the
gravitation while the translation velocity is relative to
the constraints that disable the orbitation.

Now if we let the object fall to the floor we slightly
decrease the constraints applied to it, so we slightly de-
crase vT , and the overall velocity is not null any more.
The trajectory of the object is of course a conic with an
eccentricity, given by the expression 8, close but lower to
1 : e = vT /vR = 0.999... Such a conic with such an eccen-
tricity is a very sharp ellipse as presented on the figure
2. Locally the object looks like falling on a straight line
but in reality it falls on a conic. An observer confined
into a tidy blind cabin, droping an object to the floor,
will know if he is at the surface of a planet rather than
mechanically thrusted. In the first case the object will
fall on a conic (vR 6= 0), while in the second case the
object will fall on a stright line (vR = 0).

E. Mechanical versus gravitational acceleration

Let us consider an orbiter of mass m on a perfect cir-
cular orbit, so having ~vT = ~0. Its acceleration is of course

FIG. 2. Fall of an object from a height h, at the surface of a
planet. Locally the fall looks like a straight line but it is not,
this is the part of a conic.

given by the expression 5. Let us now apply a mechanical

force ~F provided by an engine, the total acceleration will
then become :

~a = −LvR
r3

~r +
~F

m
(16)

Integrating this expression must lead to the velocity de-
fined by the expression 1 because the orbiter must respect
the theorem 1. We shall therefore verify :

~vR =

∫ t

t0

−LvR
r3

~rdt and ~vT =

∫ t

t0

~F

m
dt (17)

We see here that the mechanical acceleration can only
provide the translation while the gravitational one pro-
vides the rotation. This is quite logical as far as a force
must have a connection to the axis of rotation to cause
a rotation, but the mechanical force has no connection
to the axis. At the contrary the force of gravitation has
a connection to it, this is the gravitation itself, so it can
cause a rotation.

This explains why it is impossible to accelerate me-
chanically a satellite by keeping it on a circular orbit.
Any thrust, as short and local as it could be, whatever
its direction, will cause ~vT to be not null any more, and
therefore the eccentricity e = vT /vR to be different from
zero, so the circular orbit will change into an ellipse.

The conclusion is that the gravitational and the me-
chanical accelerations are of two different natures, the
first one causing the rotation while the second can only
cause a translation.



4

F. Rotation of the galaxies

Vera Rubin has shown that the stars inside the disks of
the galaxies have a velocity incompatible with the New-
ton’s theory of the gravitation [11]. The figure 3 gives a
typical example of what is expected from the Newton’s
postulate and what is actually measured. At a first ap-
proximation we can consider that the stars in the galactic
disk have a circular orbit and therefore their velocity is
given by the third law of Kepler 13 : v =

√
k/r.

For Newton the numerator k = GM = constant, and
consequently the velocity must decrease when the dis-
tance r increases.

For the kinematics k = LvR = Lωr, therefore v =√
Lω and the velocity can remain constant whatever the

distance, at the condition that Lω is constant too. But
Lω has the dimension of a massless energy, consequently
if the stars of the galactic disk are populating the same
massless energy level, they will have the same velocity in-
dependently of their distance to the center of the galaxy,
and the curve B of the figure 3 can be explained.

The kinematics can therefore explain the experimental
measures, at the condition that the galaxies are struc-
tured around some energy levels that are mathemati-
cally analogous to a macroscopic version of the Planck-
Einstein relation.

FIG. 3. Typical velocity of the stars in a galactic disk with
respect to their distance to the center of the galaxy. The
doted curve A is the one expected with the theory of Newton,
the plain curve B is what is actually measured.

V. DISCUSSION

The theorem 1 is not an opinion, nor an hypothesis,
nor a postulate, but a geometric reality that can not be
ignored. As far as any physical theory of the gravitation
must forecast the existence of the three laws of Kepler,
it must also be consistent with this theorem. This is
the case for the mathematical structure of the Newton’s
acceleration, but not for its interpretation, on two im-
portant points.

First, for the kinematics the direction of the acceler-
ation is indeed opposed to the direction of the vector

radius, like Newton said, however the acceleration is not
attractive but centripetal. We should not speak of the
”universal attraction”, but of the ”universal rotation”.
Looking at the astral bodies in our telescopes, we must
admit that they are indeed rotating around each oth-
ers rather than collapsing by attraction like two magnets
would do.

Second, to be consistent with the kinematics the con-
stant numerator GM of the Newton’s acceleration must
be equivalent to the constant numerator LvR of the kine-
matics (see equation 14). Implicitly Newton has then
postulated that GM = LvR, and this postulate is work-
ing indeed pretty well at the scale of the solar system, as
it has been fully experimented. However we know that
the Newton’s acceleration fails to explain the experimen-
tal observations at the galactic and atomic scales. This
could be due to the factor GM that is drastically and
universally constant, while LvR is more mathematically
flexible and could vary at different scales. Let us indeed
remember that the Coulomb’s acceleration has the same
mathematical structure as the kinematic acceleration 5,
and therefore we are led to wonder if the theorem 1 could
also be at work, LvR being then equal to the Coulomb’s
constant. This has to be investigated.

The Einstein’s General Relativity (GR) also uses the
constant GM as a key factor, but we know that it does
not work at an atomic scale. It might then be interest-
ing to investigate what changes could happen by using
LvR instead. Would it then be possible to extend the
GR at other scales ? At this regard we may remind that
in the atomic model of Rutherford, the electron is rotat-
ing around the proton like a planet around the sun [14].
It was then opposed to him that a rotating electron has
a centripetal acceleration and therefore, being charged,
it must emit some radiations, making the atom unstable.
However this argument was unfair because if the electron
is really like a planet, it is in weightlessness. It feels no
acceleration, then emits nothing, and its orbit is perpet-
ually stable. But so far the only way that we have to
explain the weightlessness is the GR, by the curvature
of the space-time. Therefore we are led to wonder if the
GR could be extended to the atomic scale by using LvR
instead of GM . This has also to be investigated.

An other important consequence of the theorem is that
a gravitational acceleration can not be equivalent to a
mechanical acceleration, the first one causing a rotation
while the second can only cause a translation (see sections
IV D and IV E). This contradicts the Einstein’s equiva-
lence principle, at least as he exposed in his publications
of 1907 and 1911 [12, 13]. Therefore, knowing that many
people take this postulate as the corner stone of the GR,
we may wonder if the GR is still correct. For us, no
doubt on its validity because the predictions of the GR
forecast a big lot of experimental observations, from the
precession of Mercury to the existence of the black holes,
passing through the gravitational waves and lenses, and
much more. So what rather suggests the kinematics is
only that the GR could be based on something else than
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the equivalence principle.
Last but not least, the theorem can explain the rota-

tion of the galaxies in a very simple and straight forward
manner. All the stars having the same massless energy
level E0 = Lω = constant (energy divided by the mass of
the orbiter) will have the same velocity regardless to their
distance to the center of the galaxy (see IV F). Because
the theorem is purely geometric but embeds no physical
concept, we can not figure out what would be the physical
reason for such a structure, we can only certify that this
is a possible mathematical solution to explain the rota-
tion of the galaxies, with no need of any postulate like the
existence of a strange dark matter or a magical accelera-
tion appearing at long range. We can note however that

E0 = Lω is a macroscopic version of the Plank-Einstein
relation E = ~ω, and therefore the stars in the galactic
disk are populating a constant energy level like electrons
do in an atom or a molecule. Our current vision of the
physics of the galaxies should then be reviewed.

To conclude we must remind that the kinematics alone
can not replace a physics theory, because it can not con-
sider any physical property of a system, like the mass
for instance. The theorem 1 is only a geometric descrip-
tion of the motion. However all physical theories of the
gravitation must at least respect the kinematics, there-
fore this theorem. This last then appears like an help
to improve our physical theories, and why not extending
their validity at other scales than their current ones.
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