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Abstract: We present a simple but new kinematic analysis of the Keplerian velocity that W.R Hamilton described by the
means of the hodograph representation.  This analysis  expectedly predicts  the  Kepler's  laws as well  as the mathematical
structure of Newton's gravitational acceleration. However its interpretation of the body falling is different from the current
one, and it considers Newton's physical factor GM as a particular case of a broader kinematic factor, free of any physical
constraint.  Using  this  factor  instead  of  GM,  to  agree  the  kinematics,  could  enable  to  extend  Newton's  gravitational
acceleration to other scales, as suggested by two examples of applications.

Introduction

In 1845 W.R. Hamilton demonstrated[1] by the way of the
hodograph  representation  that  the  velocity  of  all
Keplerian orbiters is simply the addition of two uniform
velocities,  one  of  rotation  plus  one  of  translation.  This
geometric fact has been confirmed since by many authors
in  the  literature[2-8].  Consequently  the  derivation  of  this
velocity leads to a centripetal acceleration, but not  to  an
attractive one, like Newton  assumes,  although no author
noted this obvious mathematical fact. 

The  trajectory  of  a  mobile  experiencing  an  attractive
acceleration is  collinear  to  the  acceleration,  while  the
trajectory  of  a  mobile  experiencing  a  centripetal
acceleration  is  perpendicular  to  the  acceleration.  The
centripetal  and  attractive  accelerations  are  thus  of  very
different  natures.  They  cannot  be  assimilated  nor
confused.

Therefore,  there  is  here an  inconsistency  between  the
geometry  of  the  Keplerian  motion  and  Newton’s
postulate.  We then decided to make a deeper kinematic
analysis  of  the  Keplerian  motion,  starting  from
Hamilton’s  velocity,  in  order  to  understand  more  about
this inconsistency.

Like  Hamilton,  the  authors  used mainly the  hodograph
representation,  but  this  way of  doing  things  makes  the
kinematics  of  the  motion  difficult  to  handle
mathematically.  We present  here  a  simpler  and  straight
forward  kinematic  analysis  of  this  simple  Keplerian
velocity, that has not yet been described in these terms in
the literature, at our knowledge. 

As expected,  this analysis  shows that  the three laws of
Kepler as well as the mathematical structure of Newton’s
acceleration  derive  from  the  Keplerian  velocity
demonstrated  by  Hamilton.  It  shows  that  Newton’s
attractive  acceleration  for  the  planetary  motions  is
kinematically  fully  compatible  with  a  centripetal
interpretation. However, this is not true any more for the
body falling,  for  which  the kinematics  predicts  a  conic
trajectory while Newton’s assumes an accelerated straight
line. There is thus a conflict that we will propose to solve.
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The  kinematic  analysis  also  demonstrates  that  the
physical  factor  GM[10] of  Newton’s  gravitational
acceleration must correspond to the kinematic factor LvR

(L being the norm of the massless  angular  momentum,
and vR being Hamilton’s rotation velocity).  GM and LvR

have the  same  dimension  (m3s-2),  and  same  role
(numerator),  in  the  mathematical  expression  of  the
Keplerian  acceleration.  This  equivalence  leads  us  to
propose  the  extension  of the  scope  of  Newton’s
acceleration at other scales than the only astronomic one.

Kinematic analysis

Figure  1  :  the  Keplerian  velocity  v decomposed  into  its
rotation velocity vR and its translation velocity vT.

The velocity  v of any Keplerian orbiter has been widely
described in the literature, it is simply the vector addition
of two uniform velocities, one of rotation, vR , plus one of
translation,  vT .  Its  simplest  mathematical  expression is
then as follows:

v= vR + vT

with
vR =ω ×r
vR=‖vR‖=ω r =constant
vT= constant

(1)

In this expression  ω is the vector frequency of rotation,
perpendicular to the plane of the orbit, and r is the vector
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radius, from the focus of the orbit to the orbiter. Note that
vT and  vR are coplanar all along the orbit. Take care, in
this  expression  the  index  R  means  “rotation”  but  not
“radial”, while the index T stands for “translation” but not
“tangential”. The figure 1 shows these two velocities on a
typical Keplerian orbit.

Now let us demonstrate that coming from this definition
of  the  orbital  velocity  we  can  predict  the  existence  of
Kepler’s laws as well as Newton’s acceleration, or at least
its mathematical structure.

The first consequence of the above expression  (1) is the
validity  of  the  following  one  by  derivation  of  vR with
respect to time ( ω and ω̇ being colinear) :

ω̇ r =− ṙ ω (2)

From the relations  (1) and  (2) we can then calculate the
acceleration which is the derivative of the velocity with
respect to time :

a =ω̇× r+ω ×v =− ω

r2
× (r×(r× v)) (3)

Now defining the massless angular momentum like R.H.
Battin[8] did as 

L=r× v (4)
the final expression of the acceleration is given by :

a =−
L vR

r3 r (5)

Therefore  the  acceleration  and  the  vector  radius  are
colinear  and this forces the angular momentum to be a
constant, as awaited for a central field motion :

L=constant (6)

Note that  the expression  (5) of the acceleration has the
same  mathematical  structure  as  Newton’s  gravitational
acceleration, but it is of course centripetal.

Now from this we observe that the vector product of the
rotation  velocity  with  the  angular  momentum  leads
trivially to :

vR ×L= vR
2 (1+

vR . vT

vR
2 ) r (7)

The scalar version of this equation is therefore :

p =(1 +e cos θ) r

with p =
L
vR

 and e=
vT

vR

(8)

This is the equation of a conic where p is the semi latus
rectum, e is the eccentricity and θ is the true anomaly, i.e.
the  angle  between  vT and  vR which  is  also  the  angle

between the direction of the perigee and the vector radius.
This is the expression of Kepler’s first law.

Note that the eccentricity vector is given by :

e =
vT×L

L vR
(9)

Therefore the translation velocity is always perpendicular
to the main axis of the conic, which direction is the one of
the  vector  eccentricity.  The  figure  1  exhibits  both  the
rotation and the translation velocities at different positions
on a conic.

Let us now notice that the scalar multiplication of the total
velocity and the vector radius leads to :

r . v =r . vT=r ṙ  thus ṙ =vT sin θ (10)

Using this  last  expression  it  is  trivial  to  show that  the
angular momentum can be presented as the multiplication
of the square of the vector radius and the derivative of the
true anomaly with respect to time :

L=r2
θ̇ (11)

This last expression is very well known, being described
for instance by L. Landau and E. Lifchitz in their course
“Mechanics”[9]. It shows that the areal velocity, defined as
ḟ =r2

θ̇/ 2 ,  must  be  a  constant  as  far  as  the  angular
momentum  also  is.  Therefore  the  expression  (11) is
nothing else but the second law of Kepler.

Note that the time derivative of the true anomaly θ̇ and
the frequency of rotation ω are related by the following
formula :

θ̇=ω(1 +e cos θ)     or    r θ̇= p ω (12)

Now  integrating  the  expression  (11) over  a  complete
period T of revolution for an ellipse (see L. Landau and E.
Lifchitz[9]),  knowing  that  the  surface  of  an  ellipse  is
f =π a b , a being the semi major axis and b=√a p  the

minor one, we can integrate as so :

∫
0

T

Ldt =L T=∫
0

T

2 ḟ dt=2 f= 2 π a √a p (13)

Then using the equations  (8),  we are trivially led to the
following formula :

L vR =4 π
2 a3

T2 = k =constant (14)

This is the expression of the third law of Kepler.

In addition, we can see a deep connection between this
Keplerian kinematics and the classical mechanics. Indeed
by calculating the square of the velocity (1) it is trivial to
get the following relationship :
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1
2

v2
−

k
r
=

1
2

vR
2
(e2

−1)= constant (15)

If  we  multiply  this  expression  by  the  mass  m  of  the
orbiter, we get its classical mechanical energy[9], which is
therefore :

EM=
1
2

m v2
−

mk
r

=
1
2

m vR
2
(e2

−1) (16)

From this expression we see that the mechanical energy is
minimum  when  the  eccentricity  is  null,  EM=−vR

2
/ 2 ,

and the energy is null when the eccentricity is equal to 1,
i.e. when the trajectory is a parabola. Consequently, the
energy necessary to extract an orbiter from the orbit of a
central  body,  starting  from  a circular  orbit,  is  simply
Δ E= m vR

2
/2 .

Finally,  we demonstrated  that  the expression  (1) of  the
Keplerian velocity can predict the three laws of Kepler, as
well  as  the  mathematical  expression  of  Newton’s
gravitational acceleration. It is then fully consistent with
all what we know today about the Keplerian motion. 

However the kinematics disagrees with Newton about the
interpretation  of  his  acceleration,  it  must  be  centripetal
but not attractive, although the mathematical expression is
the same in both cases. Concerning the planetary motions,
Newton’s  acceleration  is  indeed  kinematically  fully
compatible with a centripetal acceleration, however this is
not true any more for the phenomenon of body falling.

In the following we will explore the consequence of this
disagreement and propose a way to solve it. We will also
propose a way to extend Newton’s acceleration to other
scales, by using the relation (5).

Body falling

For  Newton  the  apple  falling  from  the  tree  must
experience an attractive force from the Earth, and then fall
on a straight line, collinear to the attractive acceleration,
as it must be. However we know that a  straight line is not
a limit, nor a particular case of the conic equation (8), as
far as we must believe the laws of geometry. 

Indeed a straight line cannot  dependent upon an angle, so
θ. Forcing θ to be a constant in the conic equation makes r
constant, it can then only describe a point, not a line, and
even  less  an  accelerated  straight  trajectory.  When  the
eccentricity is null, e=0, the  conic  trajectory is a circle,
when e=1 it is a parabola, an ellipse between both, and
when e>1 it is an hyperbola. None of these curves is a
straight line.  There are only 4 types of  conics,  and the
straight line is not part of them. 

A linear trajectory does not respect Kepler’s first law that
imposes a conic trajectory. It does not respect neither the
second  and  third  laws,  as  far  as  no  surface  nor  areal
velocity can be defined on a linear trajectory.  Therefore,
on  this  issue  there  is  a  conflict  between  Newton’s

postulate and  Hamilton’s kinematics. We have two ways
solving it.

The first  one consists to keep the conflict  by assuming
that  the  body  falling  is  an  other  gravitational  state,
different  from the  general  Keplerian  state,  and denying
Hamilton’s kinematics.  If  so, we must explain why and
how  a  body  can  switch  between  these  two  different
physical states. What are the physical criteria that make a
body  falling  in  a  gravitational  field,  not  following
Kepler’s laws, but rather an accelerated straight line.  If
we believe in Newton’s attraction, this is  a  problem to
solve.

The  second  one  consists  to  accept  the  kinematics,  and
then  we  must  explain  why  the  apple  is  experimentally
falling  on  a  straight  line.  This  can  be  achieved  by
considering the apple falling on a very sharp ellipse that
could be confused locally with a straight line. For instance
with an eccentricity equal to e=1-10-20, the major axis of
the ellipse being the Earth radius, the minor axis is not
more than some tenth of  a  millimeter.  Such an ellipse,
which focus is at the Earth center of mass, and apogee at
the altitude of the apple tree branch, is so sharp that it can
be locally confused with a straight line. Let us explain the
existence of such sharp ellipses.

When the apple stands on the tree, it has a null velocity,
but must however respect the equation (1). The translation
velocity must then be the exact opposite of the rotation
velocity : vT = -vR . At a distance of one Earth radius, vR is
approximately  7.9  103m/s,  and  so  huge  is  vT ,  in  the
opposite  direction.  Exactly  as  vR is  the  integral  of  the
gravitational acceleration (5),  vT is the integral of all the
other accelerations that are not gravitational, coming from
“friction”  forces.  The  apple  would  only  suffer  the
gravitation,  it  would  gravitate around  the  Earth  on  a
circular  orbit  (vR=7.9  103m/s,  vT=0m/s),  but  the  tree
blocks it, itself being blocked by the ground, and so on,
each time increasing vT.

When the apple disconnects from the tree, it is freed of a
small part of these “friction” accelerations, so forces, that
disabled  its  pure  gravitational motion.  Therefore  vT

decreases a little bit, i.e. vT = (1 - ε) vR , where ε is very
small. The overall Keplerian velocity  (1) is then not null
any more, the apple falls. But it  falls on a conic which
focus is at the Earth center of mass and which eccentricity
is  worth  e=vT / vR=1 −ϵ .  If  ε  is  very  small,  such  a
conic is a very sharp ellipse, that could appear locally as a
quasi  straight  line  if  the  observer  does  not  have
measurement  means  that  are  precise  enough.  This  is
where we all confuse. The Keplerian ellipse of the falling
apple is so sharp that we have no means to measure its
curvature  between  the  tree  branch  and  the  ground.
Therefore we approximate it to a straight line.

The Keplerian kinematics explains that the Earth would
be transparent, and all its mass concentrated in a single
mathematical  point,  the  apple  would  orbit  around  this
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point and get back to its initial position, exactly as any
satellite  does.  And  because  the  atoms  are  not
mathematical points, but have a size, this process can also
ensure that such thin ellipses are suitable to collide and
aggregate many bodies, so to build planets and stars. 

This  is  also  the  means  used  by  the  space  agencies  to
return  astronauts  from space.  From a  circular  satellited
motion vT=0, so purely gravitational, they decelerate, so
they increase vT, their trajectory becomes an ellipse which
intersects the Earth sphere,  so they can land. The more
they break, the sharper the ellipse is. They would break
further to have vT = (1 - ε) vR ,  ε being very small, they
would look like the apple, falling straight forward to the
ground, at a first approximation.

The  kinematics  thus  tells  us  that  what  looks  like  an
attraction is in reality the result of two antagonist main
accelerations, the gravitational one, that makes the bodies
naturally  orbiting,  and  the  non  gravitational  one,  that
slows down the orbiter. Therefore we should not describe
the gravitation as the “universal attraction”, but rather as
the “universal rotation”, because a totally free body in a
gravitational field will have vT=0 but never a null rotation
velocity  :  vR= √k / p≠0 ,  where  k  is  the  Keplerian
constant (14), and p the semi latus rectum of the conic. 

Newton was then slightly wrong about the gravitation. He
said  “the  moon  is  like  the  apple”,  but  the  kinematics
rather says “the apple is like the moon”. However this has
no impact on our our day-to-day experience of the  body
falling.  Its very sharp ellipse is  so sharp that  it  can be
indeed  considered  locally  as  a  straight  line  at  a  first
approximation. 

So much more important is the mathematics of Newton’s
gravitational acceleration, that the kinematics agrees with,
because it might bring the possibility to be used at other
scales than the only astronomic one.

Universality of Newton’s equation

The vector expression of Newton’s acceleration is given
by the following formula[9] :

a =−
GM

r3 r (17)

where G is the universal constant of gravitation, and M
the mass of the central body at the focus of the Keplerian
conic. But for the kinematics this acceleration is given by
the equation  (5). Therefore to make both consistent, and
remarking that GM and LvR have the same dimension in
m3s-2, we shall accept :

L vR =GM (18)

However on the left side of this equation we have a pure
kinematic parameter demonstrated from the geometry and
not submitted to any physical constraint. At the contrary
what is on the right side is purely physical, and is stated
as a postulate, the attraction. No doubt that this postulate

is  correct  in  our  physical  world,  at  a  short  astronomic
scale, because we have widely verified it experimentally.
But  could  it  be  only  a  particular  case  of  the  possible
values that could adopt LvR at different scales ? Can we
extend  Newton’s  acceleration  to  some  other  scales,  by
considering  LvR instead  of  GM,  as  the  kinematics
suggests with the relation (18) ? Let us take two examples
of situations that goes in this direction.

Keplerian hydrogen

For the first example we note that Newton’s acceleration
has  the  same  mathematical  structure  as  Coulomb’s
acceleration[13],  except  that  for  an  orbiting  electron  the
constant  kN= GM  at  the  numerator  is  replaced  by
Coulomb’s constant:

kC=
q2

4 π me ϵ0
(19)

where q is the elementary charge, ε0 is the permittivity of
vacuum and me is the mass of the electron. Defined as so,
kN and KC have the same dimension in m3s-2.

For  the  kinematics,  if LvR=kN at  an  astronomic  scale,
nothing  forbids  to  have LvR=kC at  an  atomic  one.
Therefore let us try to explain the property of the electron
of the hydrogen atom from a Keplerian point of view. We
can do so as far as the quantum mechanics allows both
wave and particle interpretations for the electron.

If the electron is a Keplerian orbiter around the proton, it
must  be  in  weightlessness,  therefore  feeling  no
acceleration,  and  therefore  emitting  nothing.  Actually
orbiting  on  circles,  such  an  electron  fully  respects  the
trajectories proposed by Bohr in his model[12]. 

We know from (16) that the energy required to extract the
electron  from  the  influence  of  the  proton  is
Δ E= me vR

2
/2 .  For  the  atom  this  energy  is  called

“ionization  energy”,  and  must  be  equal  to  Δ E=ℏ ωI ,
where ωI  is the ionization frequency, and ℏ  is Planck’s
constant divided by 2 π . Therefore we must verify:

vR
2
=2

ℏ

me

ωI (20)

In parallel the kinematics for a circular motion gives :

vR
2
= L ω (21)

Combining these two last expressions we get :

L=
ℏ

m
 and ω=2 ωI (22)

Therefore knowing the numerical values of  ℏ ,  me  and
ωI ,  respectively 1.0546 10-34 kg m2s-1,  9.1095 10-31 kg

and 2.071 1016 Hz, we can calculate vR, 2.189 106ms-1, and
also the constant k with the relation (14)  k =L vR . We
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get k = 2.307 10-28 m3s-2 and this is the exact value of the
above Coulomb’s constant (19).

Knowing ω  and vR it is trivial to calculate the radius of
the orbit, and we get r = 0.529 10-10 m, which is Bohr’s
radius[12].

Now  let us assume that the possible circular trajectories
are characterized by the quantification of the fundamental
angular momentum. The orbit n will then be characterized
by Ln= n L1 , where n is an integer, and the consequent
rotation velocity will be:

vRn=
k
Ln

=
k

n L1

=
vR 1

n
(23)

Regarding (16), the subsequent mechanical energy for an
orbit n shall be:

En=−
1
2

me vRn
2

=−
1
2

me

vR 1
2

n2 =
E1

n2 (24)

The transition between two mechanical energy levels n1

and n2 will be given by :

Δ E12 =E1 (
1

n 2
2 −

1

n1
2 ) (25)

This  explains  the  emission/absorption  spectrum  of  the
hydrogen. 

At last we shall note that the ratio between the electron
velocity and the speed of  light  leads to write  (with the
above definition (19) of kC):

α=
vR

c
=

L vR

L c
=

kC

L c
=

q2

4 π ϵ0 ℏ c
(26)

This  is  the  expression  of  the  fine  structure  constant  as
described by A. Sommerfeld[14].

Note that so far we did not have to suppose the existence
of any electrical charge. Our way to calculate kC does not
require neither the electric charge, nor the permittivity of
vacuum. We only applied the Keplerian kinematics to the
electron  of  the  hydrogen,  assuming  that  it  is  in
weightlessness  on  a  circular  orbit  around  the  proton.
Doing so, we considered that the electron is in gravitation
around the proton with an other Keplerian constant k than
the one assumed by Newton. Nevertheless we are able to
calculate  all  its  basic  physical  characteristics,  even  its
spectrum,  by  the  only  knowledge  of   ℏ ,  me  and  its
ionization energy  Δ EI . We do not pretend that such a
particle description of the electron is the correct way to
handle what is really an electron, especially regarding its
wave properties, but just that regarding the electron like a
particle, as allowed by the quantum mechanics, it  looks
like  the  Keplerian  motion  is  deeply  correlated  to  the
electron properties in the atom.

Galaxy rotation

The second example is given by the problem of the galaxy
rotation. Vera Rubin[11] measured that the stars in the disk
of spiral galaxies have (approximately) the same velocity,
whatever  their  distance  to  the  galactic  bulb,  and  this
cannot be explained with Newton’s acceleration. Indeed,
at a first approximation we can consider that the stars in
the galactic disk have a circular orbit given by the third
law  of  Kepler  (14) :  v= √k / r .  For  Newton  k=GM=
constant,  and  consequently  the  velocity  must  decrease
when the distance r increases. This is not what Vera Rubin
measured, therefore,  some postulated the existence of  a
dark matter, or either of a new kind of acceleration at long
range, to be responsible for the observed behavior of the
stars. 

But  the  kinematics  gives  a  simple  solution  to  this
problem.  The  constant  k  is  worth   k =L vR=L ω r ,
therefore:

v= √L ω (27)

and  the  velocity  can  remain  constant  whatever  the
distance, at the condition that L ω  also is. In this case k
must  be  proportional  to  r,  but constant  because  r  is
constant for the circular motion that we consider at first
approximation. Therefore the kinematics gives a solution
to explain the observations, but this imposes a constraint :
L ω  is the same constant for all the stars of the disk. This

can  be  verified experimentally.  Note  that  L ω  has  the
dimension  of  an  energy  divided  by  a  mass,  so  this
suggests that the stars of the disk are populating the same
massless  energy  level  L ω .  It  then  looks  like  a
macroscopic  and  massless  version  of  Planck-Einstein
postulate[12] E=ℏ ω ,  that  would  be  at  work  in  the
structure of galaxies.

These two examples  of interest, the Keplerian hydrogen
and  the  galaxy  rotation,  are  just  proposals  for
investigation, they do not prove anything as such. They
just show that using k = LvR, rather than restricting to k =
GM, might  make Newton’s acceleration universal,  rather
than his only constant G, and consistent with the physical
observations at  different scales.   

Conclusion

The kinematics that we presented here is trivial and agree
all  what  we  already  know  mathematically  about  the
Keplerian  motion.  We  made  no  use  of  any  physical
postulate,  nor  hypothesis,  we  just  described  the  trivial
kinematics  deriving  from  the  structure  (1) of  the
Keplerian velocity demonstrated by Hamilton. 

The derivation  of  Hamilton’s  velocity  leads  trivially  to
Kepler’s  laws  as  well  as  the  mathematical  structure  of
Newton’s  gravitational  acceleration.  However  we  shall
notice two particular points. 

First,  for  the  kinematics  the  Keplerian  acceleration  is
centripetal,  but  it  is  attractive for  Newton.  This  has  no
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impact on the planetary motions because in this case what
Newton calls “attraction” is the acceleration that avoids
the planet to remain on a straight line, so “attracting” it
toward a center, and this is indeed a way to describe the
centripetal acceleration. But taking the word “attraction”
literally, causes a problem regarding the phenomenon of
body falling. Because the trajectory of an attracted mobile
must be collinear to the attractive acceleration, the apple
must then fall from the tree on a straight line. But in this
case the apple does not respect Kepler’s laws, despite all
bodies  should  do  by  falling  in  a  gravitational  field.
Fortunately the kinematics forecast that the trajectory of
the apple must be a very thin ellipse, which focus is at the
Earth center,  so flattened that its curvature is negligible
locally, and thus can be confused with a straight line at a
first approximation. 

Second, the kinematics  suggests that  Newton’s constant
GM might be only a special value at a special scale of the
broader  kinematic  factor  L vR  that  has  no  physical
constraint  to  respect.  This  is  particularly  questioning
when considering the hydrogen’s electron like a Keplerian
orbiter,  orbiting  in  weightlessness  on  circular  orbits
around the proton. Indeed we show that all the kinematic
characteristics of the electron as well as its spectrum, can
be deduced from the Keplerian kinematics,  without  the
knowledge of the existence of the electric charge. At the
other  scale size,  the  one of  the  galaxies,  we show that
Hamilton’s  kinematics  gives  a  possible  mathematical
solution to the rotations of spiral galaxies, with no need of
any dark matter, nor of a modified Newtonian dynamics.
All this suggest that, more than his constant G, what is
universal  in  Newton’s  acceleration  is  its  intrinsic
mathematical structure. 

This could open some new perspectives, but a lot has still
to  be done to  be  affirmative on Newton’s  gravitational
acceleration being extendable to other scales. This article
only outlines some tracks of thought about this issue. 
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